Data Structures in R

There are five basic data structures that are available in R.

1. Vectors

A collection of values that all have the same data type. The elements of a vector are all numbers, giving a numeric vector, or all character values, giving a character vector.

A vector can be used to represent a single variable in a data set.

```
1
2
3
```

Example:

```
> seq(1, 10)
[1]  1  2  3  4  5  6  7  8  9 10

> 1:10
[1]  1  2  3  4  5  6  7  8  9 10

> seq(1, 10, by=3)
[1]  1  4  7 10

> shapes <- rep(c("round", "oval", "long"), 4)
> shapes
[1] "round" "oval" "long" "round" "oval" "long" "round" "oval" "long"
[10] "round" "oval" "long"

> patterns <- rep(c("pattern", "plain"), each=3, length=12)
> patterns
[1] "pattern" "pattern" "pattern" "plain" "plain" "plain" "pattern"
[8] "pattern" "pattern" "plain" "plain" "plain" "plain"

> shades <- rep(c("light", "dark"), each=6)
> shades
[1] "light" "light" "light" "light" "light" "light" "dark" "dark" "dark"
[10] "dark" "dark" "dark"
```

2. Factors

A collection of values that all come from a fixed set of possible values. A factor is similar to a vector, except that the values within a factor are limited to a fixed set of possible values.

A factor can be used to represent a categorical variable in a data set.

```
F
M
F
```
Examples:

```r
> shapesFactor <- factor(shapes, levels=c("round", "oval", "long"))
> shapesFactor
[1] round oval long round oval long round oval long
Levels: round oval long
```

3. **Matrices**

A two-dimensional collection of values that all have the same type. The values are arranged in rows and columns.

There is also an **array** data structure that extends this idea to more than two dimensions.

```
1 4 7
2 5 8
3 6 9
```

Example:

```r
> matrix(1:6, ncol=3)
[,1] [,2] [,3]
[1,]  1  3  5
[2,]  2  4  6
```

```r
> array(1:8, dim=c(2, 2, 2))
, , 1
 [,1] [,2]
[1,]  1  3
[2,]  2  4
, , 2
 [,1] [,2]
[1,]  5  7
[2,]  6  8
```

4. **Data frames**

A collection of vectors that all have the same length. This is like a matrix, except that each column can contain a different data type.

A data frame can be used to represent an entire data set.

```
1 F a
2 M b
3 F c
```
Example:

```r
candy <- data.frame(shapes, patterns, shades, counts)
candy
```

<table>
<thead>
<tr>
<th>shapes</th>
<th>patterns</th>
<th>shades</th>
<th>counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>round</td>
<td>pattern</td>
<td>light</td>
<td>2</td>
</tr>
<tr>
<td>oval</td>
<td>pattern</td>
<td>light</td>
<td>0</td>
</tr>
<tr>
<td>long</td>
<td>pattern</td>
<td>light</td>
<td>3</td>
</tr>
<tr>
<td>round</td>
<td>plain</td>
<td>light</td>
<td>1</td>
</tr>
<tr>
<td>oval</td>
<td>plain</td>
<td>light</td>
<td>3</td>
</tr>
<tr>
<td>long</td>
<td>plain</td>
<td>light</td>
<td>2</td>
</tr>
<tr>
<td>round</td>
<td>pattern</td>
<td>dark</td>
<td>9</td>
</tr>
<tr>
<td>oval</td>
<td>pattern</td>
<td>dark</td>
<td>0</td>
</tr>
<tr>
<td>long</td>
<td>pattern</td>
<td>dark</td>
<td>2</td>
</tr>
<tr>
<td>round</td>
<td>plain</td>
<td>dark</td>
<td>1</td>
</tr>
<tr>
<td>oval</td>
<td>plain</td>
<td>dark</td>
<td>11</td>
</tr>
<tr>
<td>long</td>
<td>plain</td>
<td>dark</td>
<td>2</td>
</tr>
</tbody>
</table>

5. Lists

A collection of data structures. The **components** of a list can be simply vectors--similar to a data frame, but with each column allowed to have a different length. However, a list can also be a much more complicated structure.

This is a very flexible data structure. Lists can be used to store any combination of data values together.

```r
dimnames(candy)
```

```r
list(rownames=rownames(candy), colnames=colnames(candy))
```

Example:

```r
dimnames(candy)
```

```
[[1]]
[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"  "11"  "12"

[[2]]
[1] "shapes"  "patterns"  "shades"  "counts"

```r
list(rownames=rownames(candy), colnames=colnames(candy))
```

$$
\begin{align*}
\text{F} & \quad \text{M} \\
\text{F} & \quad \text{a} \\
& \quad 1 \quad 2
\end{align*}
$$

```r
list(rownames=rownames(candy), colnames=colnames(candy))
```

```r
$\text{rownames}
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

$\text{colnames}
[1] "shapes" "patterns" "shades" "counts"
```